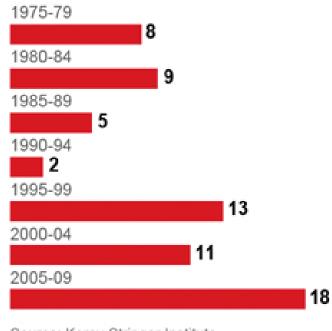
Helmet Temperature Sensor Project – Final Report

Group 32 – Tyler Perez(Presenter),

Norman Luc, Grace Murray


Client: Marc Schmidt, Jarden Team Sports

Background and Need

- 1979-1995: 7000 heat related deaths in the US
- Heat illness Third leading cause of death in US high school athletes
- Since 1995, 39 football players have died of heatstroke

Heat deaths rising

Heat-related fatalities that occurred during sports have more than doubled since 1975.

Source: Korey Stringer Institute By Veronica Salazar, USA TODAY

Design Specifications

Specification	Requirement
Size	All components fit in existing equipment
Weight	2-3 ounces
Alarm	The device should be in the audible range of 70-75 dB, visible from 100 yards, or generate 1.2-26.2 G
Accurate	± .1° C
Reliable	Less than 5 false alarms per season
Durable	Can continue operating after an impact of 250-300G
Cost	No requirement

Pugh Chart

		Location: Mouth Guard								
		Infrared Thermometer			Thermistor			Thermocouple		
Variables	Weight	Sound Alert	Vibration Alert	Light Alert	Sound Alert	Vibration Alert	Light Alert	Sound Alert	Vibration Alert	Light Alert
Client Preference	10	9	9	9	9	9	9	9	9	9
Time	10	7	7	8	7	7	8	7	7	8
Safety	10	7	7	6	7	7	6	7	7	6
Size	9	6	5	6	7	6	7	7	6	7
Accuracy	8	7	7	7	8	8	8	6	6	6
Alert Efficacy	8	5	9	5	5	9	5	5	9	5
Weight	7	6	5	6	7	6	7	7	6	7
Susceptibility to damage	6	6	6	4	7	7	5	7	7	5
Cost	4	7	7	7	8	8	8	8	8	8
Total		486	502	474	520	536	508	504	520	492

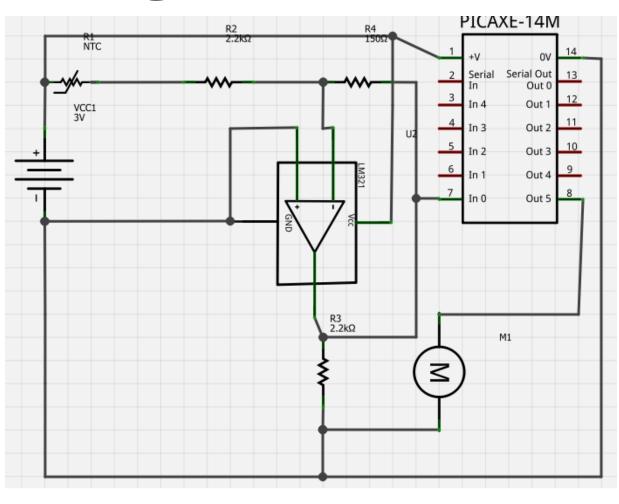
Parts

Thermistor – ON-909-44034 OMEGA surface sensing

Battery - CR1225 3V Lithium Cell Battery

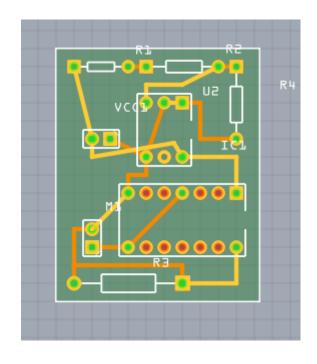
Battery Cell Holder - HU1225-LFThrough-hole battery holder

Microprocessor - MSP430F2003IPW Mixed Signal Microcontroller


Vibrating Motor – 310-013 Pico Vibe 10mm Vibration Motor

Operational Amplifier - LM321MF Low Power Single Op Amp

Resistor - CH0402-20RJPT, Thin Film Microwave Resistor


Additional Wires — to connect parts

Circuit Diagram

Printed Circuit Board Option

- 29 mm x 36 mm
- Uses carbon resistor
- Requires larger packages for chips
- Concerned about board being damaged if mouth guard bends

Microprocessor Flow Chart

Active 1

- Take 100 data points in 1 second
- If 75 are above threshold then criteria 1 is met

Inactive [

• Processor is in low power mode

Active 2

- Takes another 100 data points for 1 second
- If again 75 points are above the threshold then criteria 2 is met
- Motor activates for 10 seconds

Criteria 1: One sampling period has is has 75% of data points above threshold

Criteria 2: Current and previous sampling period each had 75% of data points above

threshold

Motor activates: Criteria 1 and 2 are met

Circuit Calculations

Temperature Resolution

$$LSB = \frac{V_{FSR}}{2^n} = \frac{3}{2^{16}} = 0.0000458 V$$

$$\Delta R_T = 0.076 \Omega$$

Using a linear approximation $\Delta T = 0.003$ °C

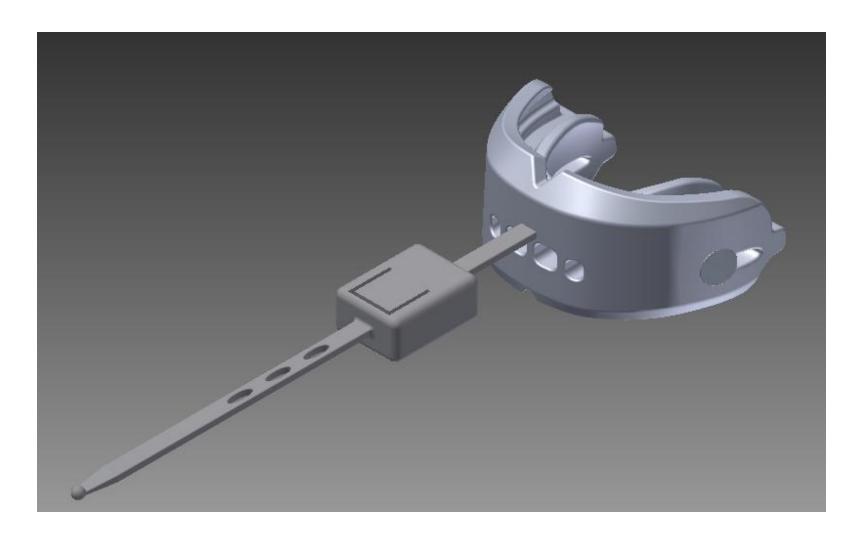
Power Requirements

- Operating currents
 - Thermistor: 15μA
 - Operational Amplifier: 430µA
 - Microprocessor Active (1.7%): 720µA
 - Microprocessor LPM (98.3%): .9µA
- Average operating current:
 458.05 μA

Gain Required

Analysis done with 50° C as upper limit

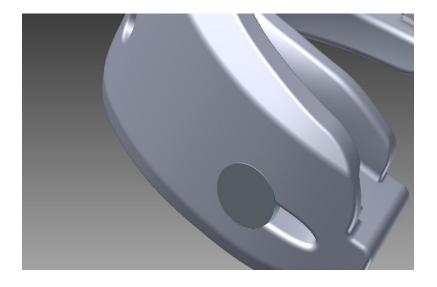
$$I_{in} = \frac{V_{battery}}{R_T} = \frac{3 V}{1801 \Omega} = 1665 \ \mu A$$

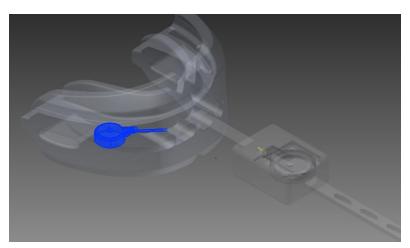

$$I_{out} = \frac{V_{max}}{R_{mp}} = \frac{3\,V}{200,\!000\,\Omega} = 15~\mu A$$

Gain: 0.01

$$R_f = 20,000 \Omega$$

$$R_1 = 200 \Omega$$


Mouth Guard Design

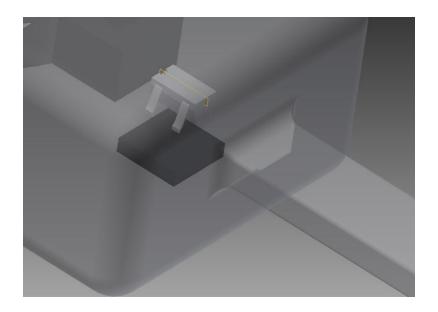


Internal Mouth Guard Components

Thermistor

Vibrating Motor

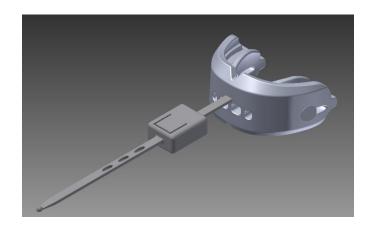
Mouth Guard Extension



Internal Extension Components

Battery and Holder

Electrical Components


Manufacturing

- Components will be soldered together and placed in an injection mold
- The mold will be filled with Elvax® (DuPont), an ethylenevinyl acetate resin

Injection pressure	35-100 MPa
Melt temperature	< 220 °C
Mold coolant	15-40 °C
temp.	

Source: DuPont

Pricing

Thermistor Part Number: ON-909-44034				
1 to 9	\$55			
10 to 24	\$49.50			
25 to 49	\$44			
50 to 99	\$38.50			
100 and over	\$33			
Availability	Now			
Lead Time	None			

3V Lithium Cell Battery			
Part Number: CR 1225			
1	\$1.41		
10	\$1.33		
50	\$1.26		
100	\$1.20		
200	\$1.12		
500	\$1.01		
1000 \$0.93			
Availability	Now		
Lead Time	None		

Battery Holder				
Part Number: HU1225-LF				
1	\$0.85			
10	\$0.77			
50	\$0.73			
100	\$0.69			
200	\$0.64			
500	\$0.61			
1000	\$0.57			
2000	\$0.54			
Availability	Now			
Lead Time	None			

Operational Amplifier Part Number: LM321MF				
1	\$0.70			
10	\$0.53			
100	\$0.28			
1000	\$0.25			
Availability	Now			
Lead Time	2 weeks			

Microprocessor Part Number: MSP430F2003IPW			
1	\$2.41		
10	\$2.00		
25	\$1.78		
50	\$1.68		
100	\$1.20		
250	\$1.18		
500	\$1.16		
750	\$1.14		
1000	\$1.11		
Availability	Now		
Lead Time	6 weeks		

Resistor				
Part Number: CH0402-20RJPT				
1	\$4.33			
25	\$3.66			
50	\$2.99			
100	\$2.66			
200	\$2.40			
500	\$2.13			
1000	\$2.06			
2000	\$2.00			
5000	\$1.93			
Availability	Stock Low			
Lead Time	None			

Vibrating Motor Part Number: 310-003			
100	\$5.77		
1000	\$1.80		
10000	\$1.62		
Availability	Now		
Lead Time	3 weeks		

Safety

- Proper care needed to prevent bacteria and mold
- Limited electronic components in the mouth
- Battery holder has built in safety features for preventing shorts
- Warnings and manuals recommended to mitigate risk

Conclusion

- Did we achieve the goal?
- Future Directions
 - Wireless communication
 - Helmet temperature sensor
 - Integrating system into more mouth guards
- Project Improvements
 - Talk to more football/players coaches
 - No perfect way to measure temperature
- Intellectual Property
 - Combination of all different parts into one
 - Patent
 - Rights given to Jarden Team Sports

References

- Pompei, Francesco. Temporal Artery Temperature Detector. Francesco Pompei, assignee. Patent US 20110092822 A1. 21 Apr. 2011.
- Moran DS, Mendal L. Core temperature measurement. Sports Medicine. 2002; 32(14):879-85.
- "Heat Illness Among High School Athletes --- United States, 2005--2009." *Centers for Disease Control and Prevention*. Centers for Disease Control and Prevention, 20 Aug. 2010. Web. 29 Sept. 2013.
- E.E. Coris, A.M. Ramirez, and D.J. Van Durme. "Heat Illness in Athletes." Sports Medicine 34.1 (2004): 9-16. Print.
- "Technical Notes: Thermocouple Accuracy." Thermocouple Accuracy Table. Biodata Ltd., 12 July 2012. Web. 27 Oct. 2013.
- Mathas, Carolyn. "Temperature Sensors-The Basics Sensor Solutions." Digi-Key Corporation, n.d. Web. 27 Oct. 2013.
- "Thermochromic Technology." Color Change Technology. LCR Hallcrest, n.d. Web. 28 Oct. 2013
- "Heat Illness Among High School Athletes --- United States, 2005--2009." *Centers for Disease Control and Prevention*. Centers for Disease Control and Prevention, 20 Aug. 2010. Web. 29 Sept. 2013.
- Schmidt, Marc. "Preliminary Meeting." Personal interview. 10 Sept. 2013
- Labella, Cynthia R., Bryan W. Smith, and Asgeir Sigurdsson. "Effect of Mouthguards on Dental Injuries and Concussions in College Basketball." *Medicine & Science in Sports & Exercise* 34.1 (2002): 41-44. *Sentanta College*. American College of Sports Medicine, 1 Oct. 2001. Web. 26 Oct. 2013.
- Knapik, Joseph J., Stephen W. Marshall, Robyn B. Lee, Salima S. Darakjy, Sarah B. Jones, Timothy A.
- Mitchener, Georgia G. DelaCruz, and Bruce H. Jones. "Mouthguards in Sport Activities." *Sports Medicine* 37.2 (2007): 117-44. *Springer Link*. Ads Data Information, 2007. Web. 26 Oct. 2013.
- Daggett, Adam, Colyer Sigety, Drew Carey, and Ricky Holak. "Possible Uses for Piezoelectric Power." Worcester Polytechnic Institution, 2008. Web. 15 Oct. 2013.

Thank you!

Are there any questions?